Retightenting a Loose Cover

A question that we are often asked in the fall is “Do I put the cover on now or in the spring?”

As with most everything in life, there are two ways of looking at things and both sides have pros and cons. The answer is always the same though, “Put the cover on now since, in our opinion, the pros significantly outweigh the cons”

The pros of putting the cover on a new building in the fall include less frost penetration and a chance for ground moisture to start evaporating sooner than later. Less frost penetration means you will require much fewer heat units to get the structure operational in the spring (significant savings). Ground moisture is a challenge every new structure owner faces and allowing that extra time will significantly enhance the growing environment (much healthier).

The main con of putting the cover on in the fall is that with colder temperatures during installation, you will most likely be dealing with an excessively loose cover in the spring. This will be a task that needs to be dealt with to prevent premature cover wear. This will NOT be an ongoing issue. Once you deal with the loose cover, it will be good to go and add life to the cover.

Since cover tightening should not be undertaken until the temperature is consistently warm and warm enough It should therefore not be done until May and until the minimum temperature is over 20C. This requirement also means that you should use a temporary fix to carry you over until you can do a permanent fix.

Do not use rope (especially nylon) over a loose cover to temporarily tighten a cover unless you are facing an emergency. The abrasion factor will create new problems while you are dealing with the other problem. Seat belt material or ratchet straps make ideal fasteners for a loose cover.

If you do not have access to this and you know you will be dealing with a loose cover, you can call our office for some tarp scraps. These can be cut into 2” or 3” strips and then put over the cover at 12’ – 15’ intervals. It is important that the straps are lying flat on the cover before tightening.

When you have a warm calm day to tighten the cover, the job can be done in two stages. Since you must pull lengthwise, you can do one end on one day and the other end the next day. If you simply loosen one side and pull tight, you will have uneven tightening which still will have premature wear.

Once the two sides and one end are loose, pull toward the end and start refastening from the peak and work down. You are always working from the middle to the corner. If any wrinkles develop as you do this, always pull 90 degrees to the wrinkle. If the wind is still calm when you are finished with one end, you can then do the other end. It is important to remember that once you have started loosening the cover, you are committed to finishing the job. Having loose cover overnight is an invitation for trouble.

If anything in this article is not clear, please do not hesitate to contact us for clarification before you start.

Wind braces for structures

There is no dispute on the need for wind braces on any structure. There is often confusion on how and when those braces need to be installed.

The sooner that some sort of bracing is installed on a building, the easier it is to maintain plumb or vertical. For this reason, we stress the importance of tying off a building, both ways, as soon as the first section has been erected.

One detail that many overlooks are the total surface area of the hoops. It does not take very long to have the combined surface of a 4’x8’ sheet of plywood. For this reason, it is important to not rely for an extended period on your initial tie-down ropes as your “bracing”. There have been instances where the combined surface area of the hoops is more than the entire gable end.

If you are doing a long building with long hoops, i.e. 30’ wide, it would be wise to install the bracing before the whole structure is assembled.

Wind bracing can be installed in two directions, one goes away from the end wall and one goes toward the end wall. Both ways are acceptable, provided that you do both. If you install them toward the end at one end, you must do the same at the other end. By doing the same concept at each end, you are essentially holding things in opposite directions.

When bracing goes away from the end, the load is referred to as “tensile load”. Cable is often used for this. The cable and the clamps used must be rated against stretching and breaking. This is a convenient system since you are not limited by a precise measurement. When using this system, it is important to end up at the ground, in the 4 corners.

When bracing goes toward the end, the load is referred to as “compression load”. Round tubing with flattened ends is most often used. It is important to make sure that the tubing is strong enough as to not bend as it is being compressed. This is the method which has been used the longest since the instinctive way to brace something it to “prop something against it”.

With either method of bracing, where you start and end is very important. For bracing to be effective, you must start at a point that is connected to the whole structure. This would be either the ridge or a row of purlins. Starting at a mid point of a hoop will give little reinforcement since the hoop can flex from side to side. The closer that bracing goes at 45 degree angle, the stronger it will be.

In the case of longer hoops with multiple rows of purlins, it is advisable to have a series of shorter braces than one long one. This means you would start at a certain hoop/purlin connection and go down and over for 3 or 4 hoops and anchor at that hoop/purlin connection. Go over to the same hoop you did the first brace on and repeat the process from the lower purlin. You would then be going down to the base or the next row of purlins. Remember that if at one end, if you are going left to right, on the other end you go right to left.

Where ever you end up, it is wise to have extra anchoring at that point.

For extra clarification, please watch our “installing wind braces” video on the website.

Air Circulation & Humidity Control

Even though many people would consider air circulation and humidity control as totally separate functions, they are closely intertwined.

You may have the proper sized openings to create the proper amount of air changes.

You could still have hot or cold spots in your greenhouse if you do not have proper circulation.

The same can be said about removing humidity.

For a ventilation system to have optimum efficiency and benefit, there must be balance. Having proper air circulation allows you to achieve that balance.

Horizontal air flow (HAF) fans typically come with a cage around the blades, a hanger bracket and a cord with plug. This allows them to be attached or suspended from the frame at the proper location. The motors are rarely more than 1/3 hp.

HAF fans always are installed in pairs and blow in opposite directions. A short greenhouse will have one in the front right corner and in the back left corner. A longer greenhouse will still have one in the front right and back left but also two half way down the length. The one on the right will blow in the same direction as the front right. The one on the left will be blowing in the same direction as the back left.

HAF fans should never be mounted in such a way that allows them to be blowing directly at plants. This would create an uneven drying. Some people will aim the fans slightly in the direction of the cover to ensure maximum air flow along the cover to maintain dry covers.

These fans run continuously to ensure that the temperature and humidity are spread evenly throughout. It also ensures that your thermostat or humidistat are reacting to air or moisture that is representative of what is going on in the greenhouse.

Ventilation is a difficult area of greenhouse production to get perfect. The more attention you pay to the details and modify what you are doing, the greater your production. The tricky part is that with all the variables, no two years will be the same. Carefully consider all your options and the situation you’re dealing with and you will have success!

The Variations of Passive Venting

In a nutshell, passive venting is creating an opening and letting the warm / hot air escape. The simplest form of this is opening a door or window. Just because it is simple does not mean that this method will be effective in cooling your greenhouse.

If your ends face into the prevailing winds, if you can make your doors big enough and if your greenhouse is short enough. That is a lot of “if’s” and you will still be doing a lot of running back and forth to have the correct amount of opening for the amount of ventilating you need to do.

We have already reviewed the most common form of passive ventilation in the roll up sides. It was noted that roll up sides work much better when paired with a high opening to create a chimney effect. It is a fact that hot air rises so the higher you can create an opening, the more effective it will be.

If you are relying solely on gable end windows, either motorized or manual, they will need to be quite large. You will also need to have the benefit of a regularly strong prevailing wind.

The most effective form of passive venting is a continuous roof vent. This will provide a continuous opening in the precise area where the air is the hottest. A roof vent should always be mounted down wind of the prevailing wind. The benefit of being down wind is that the wind creates a vacuum as it goes over the greenhouse and sucks the warm air out.  The air intake for a roof vent is often a roll up side.

A significant down side of a roof vent is the up-front cost. The cost is the same for a narrow and a wider structure. This is the reason they are almost exclusively put on wider buildings. The cost is simply spread out over a bigger area. The effectiveness of a roof vent still makes it appealing in spite of the cost.

Roof vents can be controlled manually with a chain fall opener or with a motorized gearbox. A motorized system can be a simple open / close controller that you set the limit switches or it can have a proportional controller that allows for pre-set stages. It is with an automatic controller that the benefit of the roof vent will really become apparent. Every couple of minutes it will react and adjust to the inside condition of the greenhouse.

All of the expenditures involved with your greenhouse need to be weighed as a cost versus benefit or cost versus return. This process is especially challenging when considering the options of ventilation. Many of the expenses are subtle and hard to measure. The returns are equally hard to quantify since weather is an additional variable. This makes it even more important to keep accurate records and be aware of your options for improvements.

The benefits and drawbacks of forced ventilation

By definition, forced ventilation included an electrically operated exhaust fan at one end of a building and intake louvre at the opposite end.

The biggest advantage of this system is how simply it can be automated. Running your power supply through a thermostat will allow the system to come on and shut off at the set point.

There are numerous things which need to be considered for forced ventilation to be effective.

The prime consideration is proper sizing of the system. Most greenhouses require one air change per minute to keep the temperature within a tolerable range for the plants. Fans are rated for the cubic feet of air they can move per minute (cfm). By calculating the air volume in a greenhouse, you can then get a fan that is appropriately sized.

There also is a formula to match the air intake to the exhaust. When the intake is too small, the capacity of the fan will be restricted but if the intake is too large, it also is undesirable. A properly sized intake will create some turbulence so that incoming air is mixed with the existing air before it moves through.

Consideration must also be given if the intake has netting over it to control incoming weed seeds or insects. This will restrict more air flow than is usually expected.

The orientation of fan / louvre combination is important. If the intake is on a south facing wall, the incoming air will always be warmer than average. This means you will be moving warm air rather than cooling.

If a fan is blowing into a prevailing wind, the fan capacity can be significantly decreased as well. If you do not have a choice but point that way, it would be wise to consider a hood or other deflector over the fan.

When you are deciding on what size fan to get, it is often suggested to get two fans with that combined capacity. It will cost more up front, but the extra payback will be on extra flexibility or options for ventilating. This gives you the option of “half capacity”.

When planning for a forced ventilation system, it is important to understand the requirements and cost of getting the electrical service to that area and also what the on going operating costs will be. In both cases, these expenses can be significant.

One last thing which needs to be pointed out for consideration has to do with irrigation. In a forced ventilation structure, things dry out more quickly and they will also dry out unevenly. Just something to be aware of when you are thinking everything will get watered the same.

In our next article we will explore the opposite end of this spectrum … some of the options of passive venting.

Wind braces for structures

There is no dispute on the need for wind braces on any structure. There is often confusion on how and when those braces need to be installed.

The sooner that some sort of bracing is installed on a building, the easier it is to maintain plumb or vertical. For this reason, we stress the importance of tying off a building, both ways, as soon as the first section has been erected.

One detail that many over look is the total surface area of the hoops. It does not take very long to have the combined surface of a 4’x8’ sheet of plywood. For this reason, it is important to not rely for an extended period of time on your initial tie down ropes as your “bracing”. There have been instances where the combined surface area of the hoops is more than the entire gable end.

If you are doing a long building with long hoops, i.e. 30’ wide, it would be wise to install the bracing before the whole structure is assembled.

Wind bracing can be installed in two directions, one goes away from the end wall and one goes toward the end wall. Both ways are acceptable, provided that you do both. If you install them toward the end at one end, you must do the same at the other end. By doing the same concept at each end, you are essentially holding things in opposite directions.

When bracing goes away from the end, the load is referred to as “tensile load”. Cable is often used for this. The cable and the clamps used must be rated against stretching and breaking. This is a convenient system since you are not limited by a precise measurement. When using this system, it is important to end up at the ground, in the 4 corners.

When bracing goes toward the end, the load is referred to as “compression load”. Round tubing with flattened ends is most often used. It is important to make sure that the tubing is strong enough as to not bend as it is being compressed. This is the method which has been used the longest since the instinctive way to brace something it to “prop something against it”.

With either method of bracing, where you start and end is very important. For bracing to be effective, you must start at a point that is connected to the whole structure. This would be either the ridge or a row of purlins. Starting at a mid point of a hoop will give little reinforcement since the hoop can flex from side to side. The closer that bracing goes at 45 degree angle, the stronger it will be.

In the case of longer hoops with multiple rows of purlins, it is advisable to have a series of shorter braces than one long one. This means you would start at a certain hoop/purlin connection and go down and over for 3 or 4 hoops and anchor at that hoop/purlin connection. Go over to the same hoop you did the first brace on and repeat the process from the lower purlin. You would then be going down to the base or the next row of purlins. Remember that if at one end, if you are going left to right, on the other end you go right to left.

Where ever you end up, it is wise to have extra anchoring at that point.

For extra clarification, please watch our “installing wind braces” video on the website.