Air Circulation & Humidity Control

Even though many people would consider air circulation and humidity control as totally separate functions, they are closely intertwined.

You may have the proper sized openings to create the proper amount of air changes.

You could still have hot or cold spots in your greenhouse if you do not have proper circulation.

The same can be said about removing humidity.

For a ventilation system to have optimum efficiency and benefit, there must be balance. Having proper air circulation allows you to achieve that balance.

Horizontal air flow (HAF) fans typically come with a cage around the blades, a hanger bracket and a cord with plug. This allows them to be attached or suspended from the frame at the proper location. The motors are rarely more than 1/3 hp.

HAF fans always are installed in pairs and blow in opposite directions. A short greenhouse will have one in the front right corner and in the back left corner. A longer greenhouse will still have one in the front right and back left but also two half way down the length. The one on the right will blow in the same direction as the front right. The one on the left will be blowing in the same direction as the back left.

HAF fans should never be mounted in such a way that allows them to be blowing directly at plants. This would create an uneven drying. Some people will aim the fans slightly in the direction of the cover to ensure maximum air flow along the cover to maintain dry covers.

These fans run continuously to ensure that the temperature and humidity are spread evenly throughout. It also ensures that your thermostat or humidistat are reacting to air or moisture that is representative of what is going on in the greenhouse.

Ventilation is a difficult area of greenhouse production to get perfect. The more attention you pay to the details and modify what you are doing, the greater your production. The tricky part is that with all the variables, no two years will be the same. Carefully consider all your options and the situation you’re dealing with and you will have success!

The Variations of Passive Venting

In a nutshell, passive venting is creating an opening and letting the warm / hot air escape. The simplest form of this is opening a door or window. Just because it is simple does not mean that this method will be effective in cooling your greenhouse.

If your ends face into the prevailing winds, if you can make your doors big enough and if your greenhouse is short enough. That is a lot of “if’s” and you will still be doing a lot of running back and forth to have the correct amount of opening for the amount of ventilating you need to do.

We have already reviewed the most common form of passive ventilation in the roll up sides. It was noted that roll up sides work much better when paired with a high opening to create a chimney effect. It is a fact that hot air rises so the higher you can create an opening, the more effective it will be.

If you are relying solely on gable end windows, either motorized or manual, they will need to be quite large. You will also need to have the benefit of a regularly strong prevailing wind.

The most effective form of passive venting is a continuous roof vent. This will provide a continuous opening in the precise area where the air is the hottest. A roof vent should always be mounted down wind of the prevailing wind. The benefit of being down wind is that the wind creates a vacuum as it goes over the greenhouse and sucks the warm air out.  The air intake for a roof vent is often a roll up side.

A significant down side of a roof vent is the up-front cost. The cost is the same for a narrow and a wider structure. This is the reason they are almost exclusively put on wider buildings. The cost is simply spread out over a bigger area. The effectiveness of a roof vent still makes it appealing in spite of the cost.

Roof vents can be controlled manually with a chain fall opener or with a motorized gearbox. A motorized system can be a simple open / close controller that you set the limit switches or it can have a proportional controller that allows for pre-set stages. It is with an automatic controller that the benefit of the roof vent will really become apparent. Every couple of minutes it will react and adjust to the inside condition of the greenhouse.

All of the expenditures involved with your greenhouse need to be weighed as a cost versus benefit or cost versus return. This process is especially challenging when considering the options of ventilation. Many of the expenses are subtle and hard to measure. The returns are equally hard to quantify since weather is an additional variable. This makes it even more important to keep accurate records and be aware of your options for improvements.

Long Weekend Hours

Multi Shelter Solutions will be open on Canada Day and closed July 2nd. We will reopen 9am July 5th. Have a safe and happy holiday weekend!

The benefits and drawbacks of forced ventilation

By definition, forced ventilation included an electrically operated exhaust fan at one end of a building and intake louvre at the opposite end.

The biggest advantage of this system is how simply it can be automated. Running your power supply through a thermostat will allow the system to come on and shut off at the set point.

There are numerous things which need to be considered for forced ventilation to be effective.

The prime consideration is proper sizing of the system. Most greenhouses require one air change per minute to keep the temperature within a tolerable range for the plants. Fans are rated for the cubic feet of air they can move per minute (cfm). By calculating the air volume in a greenhouse, you can then get a fan that is appropriately sized.

There also is a formula to match the air intake to the exhaust. When the intake is too small, the capacity of the fan will be restricted but if the intake is too large, it also is undesirable. A properly sized intake will create some turbulence so that incoming air is mixed with the existing air before it moves through.

Consideration must also be given if the intake has netting over it to control incoming weed seeds or insects. This will restrict more air flow than is usually expected.

The orientation of fan / louvre combination is important. If the intake is on a south facing wall, the incoming air will always be warmer than average. This means you will be moving warm air rather than cooling.

If a fan is blowing into a prevailing wind, the fan capacity can be significantly decreased as well. If you do not have a choice but point that way, it would be wise to consider a hood or other deflector over the fan.

When you are deciding on what size fan to get, it is often suggested to get two fans with that combined capacity. It will cost more up front, but the extra payback will be on extra flexibility or options for ventilating. This gives you the option of “half capacity”.

When planning for a forced ventilation system, it is important to understand the requirements and cost of getting the electrical service to that area and also what the on going operating costs will be. In both cases, these expenses can be significant.

One last thing which needs to be pointed out for consideration has to do with irrigation. In a forced ventilation structure, things dry out more quickly and they will also dry out unevenly. Just something to be aware of when you are thinking everything will get watered the same.

In our next article we will explore the opposite end of this spectrum … some of the options of passive venting.

Anchoring: Base Brackets vs Anchor Posts

edit-Base Bracketanchor post photo

We offer two main types of anchoring for our structures: Base Brackets (left pic) and Anchor Posts (right pic).

Which one you decide to go with largely depends on your application and location. They are not to be used together, it is a one or the other option. No matter which option you choose, please be aware, there is no such thing as too many anchors!

Although the building can be anchored directly into the ground with Anchor Posts, it can also sit on a slab, curb or beam or it can be elevated on some sort of a wall. Base brackets with lag bolts are supplied standard to fasten the building to the chosen form of foundation. Anchor Posts are available at an additional cost.

Anchor Posts must be set into concrete when:

  • the soil has been recently excavated (within the last 5 years)
  • it is required by the building code (use of concrete usually classifies the building as permanent)
  • extremely windy and exposed areas exist (at least use on the corner posts)
  • more than 10% of the anchor post will be out of the ground (upgrading anchor post size may be needed)
  • there are areas where erosion has been a problem in the past

Anchor Posts SHOULD NOT be used (and base brackets used instead) when:

  • the soil is a very heavy clay (heaving would be a constant problem)
  • there is a shallow rock layer
  • there are major amounts of rocks interfering with the accuracy of anchor post setting
  • the structure will be moved shortly (anchor posts must be cleaned out before reusing)

**Recommendations are based on years of experience. Ultimately the customer is responsible to properly anchor a structure**
Please see our installation pages for a more detailed breakdown of this topic Base Brackets vs Anchor Posts

Protect Your Equipment With Economical Storage

high profile

We have a variety of shapes and sizes to suit your equipment storage needs.

Just because it can be outside, doesn’t mean it should!

Our buildings can have very straight sidewalls for more interior space with or without putting it a wall.

The recommended covering is a 12 mil woven plastic tarp that is a three layer white canvas. This will prevent excessive wear and tear on the cover if equipment is bumping into it. 7.2 mil white plastic is also an option

Putting your equipment in a storage building reduces fading by the sun and helps your investment last longer

Please see our Large Storage page for more information and don’t hesitate to call us with any questions regarding this application.