Mitigating Climate Change with a Greenhouse

In a tongue-in-cheek manner, Norm has often declared that if it weren’t for crappy weather we would not have a business.

The plain reality of the fact is, people, use greenhouses to mitigate the negative impact of weather, and nature in general, on their food and plant production.

Greenhouses allow a person to control the local environment. The more efficient they are at that process, the more profitable they can potentially be.

The main areas of this control are heating, cooling, irrigation, disease and insect and weed control. When all of these areas are exercised efficiently, production can be significantly increased and the timing of production can be better controlled.

Heating is typically the number 1 expense in operating a greenhouse in colder climates in the wintertime. Numerous covers will reduce heat loss but it is often at the expense of light transmission. The cost of certain covers may not be justified in light of the heat savings they would create. There are creative ways that the area which needs to be heated can be reduced. Growers will often choose crops with lower heat requirements to reduce the expense. Even though the heating is usually associated with cold weather, heating can also be used when dew is present to reduce the risk of fungus diseases.

Cooling a greenhouse to acceptable levels is critical during warmer seasons. During warm times, this requires a minimum of one air change per minute. If the temperature goes about a plant’s high threshold, it will stop growing for up to two weeks. There is a wide range of options for cooling a greenhouse. Many of the passive methods are more economical to install but harder to control and fine-tune. Items like roof vents are extremely effective, and have a low operating cost but are costly to install and even more costly to automate. In addition to creating uniform air changes, it is equally important to have uniformly even moving air. Stagnant air fosters diseases.

Having an area covered with a greenhouse, allows the grower to control the water to the plants. Irrigation requires the proper timing and volume of water to the plants and also proper location. Many plants perform much better when the foliage remains dry.

Greenhouses can also protect plants from excessive rain during wet seasons. One often overlooked area of irrigation is existing groundwater. When there is a high water table, care must be taken not to over water plants.

Greenhouses provide management opportunities for disease and pest control. Especially with a proper irrigation protocol, the risk of diseases can be minimized. If insecticides or fungicides are being used, it is much more controlled in the controlled environment of the greenhouse. Systems of netting can be installed over the ventilation openings to prevent the entry of airborne pests. It is important to bear in mind that this netting does restrict airflow as well.

A greenhouse also allows for more control of the weed population. Weed seeds can be allowed to germinate in the beds and then rototill them under. In the protected environment of a greenhouse, it is easy to put down black plastic for a short period of time to kill off weeds and weed seeds. It is also important to remember that if netting is used over the roll-up side openings, this will restrict airflow. Proper airflow takes priority over weed control.

When all of the above points are worked together efficiently, the grower will be able to significantly increase his or her yields. There will also be the opportunity to control the timing of the harvest to take advantage of increased pricing. i.e having a crop ready 2-3 weeks ahead of field-grown crops will easily cover the added expenses of growing in a greenhouse.

Disclaimer: we are not professional growers. The above information should only be used to draw attention to the importance of certain concepts. It is critical to seek out the advice of a professional grower to work through issues.

If you’d like to read more about these topics, let us know. We hope to have a book about this put together in time for Christmas and Winter Planning!

What is and isn’t “proper ventilation”?

Proper ventilation, in a nutshell, equals adequate air changes and movement while maintaining adequate light levels and humidity in a given area. Proper ventilation is about proper balance.

The challenging part of achieving this balance is that there is such a wide range of requirements for different plants. It is important to identify what is ideal for each variety that you are growing. It will not be feasible to have a perfect climate for each variety of plant, but you really should avoid grouping together plants with a wide difference in requirements. That would simply ensure that you are not doing very little properly.

Putting shade cloth over a greenhouse may lower the temperature to an acceptable level for your plants but that does not equal good ventilation. You may be depriving the plants of their critical light requirement plus you are not doing anything to enhance air movement.

Turning on an exhaust fan may create the required amount of air changes or movement, but with a temperature far below the plant optimum, your plants still will not achieve their potential. Fans also draw air in a straight line from intake to exhaust. This does not address “stagnant corners”.

Many times, light equals heat. They go up together and go down together. It is important to understand how and why they are controlled differently and where the overlap on that control is.

Generally speaking, proper air changes equals one air change per minute. Some plants require more and some can get by with less. For this, you will need to know what the air volume is for your building. It is a little trickier to calculate this on a gothic or quonset shaped structure. Using the length x width x 80% of peak height will give you a close enough number in either cubic feet or cubic metres.

With the next 4 posts we hope to create a more thorough understanding of how to achieve a good environment for your plants. This information will be helpful as to research options so that you can balance costs with benefits and return. Especially in the area of ventilation, many times expenses associated with proper ventilation will be offset by exponentially higher returns.

Air Circulation & Humidity Control

Even though many people would consider air circulation and humidity control as totally separate functions, they are closely intertwined.

You may have the proper sized openings to create the proper amount of air changes.

You could still have hot or cold spots in your greenhouse if you do not have proper circulation.

The same can be said about removing humidity.

For a ventilation system to have optimum efficiency and benefit, there must be balance. Having proper air circulation allows you to achieve that balance.

Horizontal air flow (HAF) fans typically come with a cage around the blades, a hanger bracket and a cord with plug. This allows them to be attached or suspended from the frame at the proper location. The motors are rarely more than 1/3 hp.

HAF fans always are installed in pairs and blow in opposite directions. A short greenhouse will have one in the front right corner and in the back left corner. A longer greenhouse will still have one in the front right and back left but also two half way down the length. The one on the right will blow in the same direction as the front right. The one on the left will be blowing in the same direction as the back left.

HAF fans should never be mounted in such a way that allows them to be blowing directly at plants. This would create an uneven drying. Some people will aim the fans slightly in the direction of the cover to ensure maximum air flow along the cover to maintain dry covers.

These fans run continuously to ensure that the temperature and humidity are spread evenly throughout. It also ensures that your thermostat or humidistat are reacting to air or moisture that is representative of what is going on in the greenhouse.

Ventilation is a difficult area of greenhouse production to get perfect. The more attention you pay to the details and modify what you are doing, the greater your production. The tricky part is that with all the variables, no two years will be the same. Carefully consider all your options and the situation you’re dealing with and you will have success!

The Variations of Passive Venting

In a nutshell, passive venting is creating an opening and letting the warm / hot air escape. The simplest form of this is opening a door or window. Just because it is simple does not mean that this method will be effective in cooling your greenhouse.

If your ends face into the prevailing winds, if you can make your doors big enough and if your greenhouse is short enough. That is a lot of “if’s” and you will still be doing a lot of running back and forth to have the correct amount of opening for the amount of ventilating you need to do.

We have already reviewed the most common form of passive ventilation in the roll up sides. It was noted that roll up sides work much better when paired with a high opening to create a chimney effect. It is a fact that hot air rises so the higher you can create an opening, the more effective it will be.

If you are relying solely on gable end windows, either motorized or manual, they will need to be quite large. You will also need to have the benefit of a regularly strong prevailing wind.

The most effective form of passive venting is a continuous roof vent. This will provide a continuous opening in the precise area where the air is the hottest. A roof vent should always be mounted down wind of the prevailing wind. The benefit of being down wind is that the wind creates a vacuum as it goes over the greenhouse and sucks the warm air out.  The air intake for a roof vent is often a roll up side.

A significant down side of a roof vent is the up-front cost. The cost is the same for a narrow and a wider structure. This is the reason they are almost exclusively put on wider buildings. The cost is simply spread out over a bigger area. The effectiveness of a roof vent still makes it appealing in spite of the cost.

Roof vents can be controlled manually with a chain fall opener or with a motorized gearbox. A motorized system can be a simple open / close controller that you set the limit switches or it can have a proportional controller that allows for pre-set stages. It is with an automatic controller that the benefit of the roof vent will really become apparent. Every couple of minutes it will react and adjust to the inside condition of the greenhouse.

All of the expenditures involved with your greenhouse need to be weighed as a cost versus benefit or cost versus return. This process is especially challenging when considering the options of ventilation. Many of the expenses are subtle and hard to measure. The returns are equally hard to quantify since weather is an additional variable. This makes it even more important to keep accurate records and be aware of your options for improvements.

The Benefits & Drawbacks of Roll-up Sides

The main attraction of roll-up sides, as a method of ventilation, is that it is economical. There is not a significant investment and can be added to virtually any structure. Regardless of structure length, nowhere is very far from open air.

It is only by properly understanding the limitations and drawbacks that one can maximize the benefit. Just because something is inexpensive does not mean that it won’t end up being costly if it does not fulfil its purpose.

Roll-up sides should always be done in pairs (both sides). Even if you have a really high percentage of prevailing wind from one direction, there will be times when you need to ventilate into the prevailing wind.

Any time you have wind going in without opportunity of escaping,
there can be damage to the building.

The average vertical opening of roll-up sides is usually about 4’. If your greenhouse is in an extremely exposed area without any protection or wind breaks, quite often 2’ of vertical opening will be sufficient.

On the contrary, if the building is extremely sheltered, 6’ of vertical opening will be required.

One thing to remember on the height of opening is that if you have a low profile structure with a high opening, a sizeable area could get wet inside when it rains.

Regardless of the size of opening, if there is not a breeze, you will not have air movement.

It is based on this potential problem, that we recommend having end wall openings as high as possible. These openings will trigger a “chimney effect” air movement that will get rid of hot air that is trapped in the greenhouse. These openings will double as your first stage of ventilation since they would be opened when it is too cold outside to start rolling up the sides.

A drawback of roll-up sides is the amount of exposure they create for airborne weed seeds and pests. It is important to remember that when you use shade cloth to minimize this drawback, you are also significantly restricting incoming air.

The biggest drawback of roll-up sides is that there is no practical way to automate them. In other words, you have to be there to open and close them. This can be challenging on the cool, sunny days that have sporadic cloud cover. The sun goes behind a cloud and the temperature plummets and then soars when the sun reappears.

The best way to minimize this challenge is to add a small exhaust fan to the set up. This way you will have something to handle the borderline situations and then open the roll up sides once there is a more predictable need.

In the next article we will explore forced ventilation in greater detail. We also have many resources on our website, as well as videos if you want to explore the topic of roll-up sides further.

roll-up side videos

roll up side considerations

roll-up side Q&A

The benefits and drawbacks of forced ventilation

By definition, forced ventilation included an electrically operated exhaust fan at one end of a building and intake louvre at the opposite end.

The biggest advantage of this system is how simply it can be automated. Running your power supply through a thermostat will allow the system to come on and shut off at the set point.

There are numerous things which need to be considered for forced ventilation to be effective.

The prime consideration is proper sizing of the system. Most greenhouses require one air change per minute to keep the temperature within a tolerable range for the plants. Fans are rated for the cubic feet of air they can move per minute (cfm). By calculating the air volume in a greenhouse, you can then get a fan that is appropriately sized.

There also is a formula to match the air intake to the exhaust. When the intake is too small, the capacity of the fan will be restricted but if the intake is too large, it also is undesirable. A properly sized intake will create some turbulence so that incoming air is mixed with the existing air before it moves through.

Consideration must also be given if the intake has netting over it to control incoming weed seeds or insects. This will restrict more air flow than is usually expected.

The orientation of fan / louvre combination is important. If the intake is on a south facing wall, the incoming air will always be warmer than average. This means you will be moving warm air rather than cooling.

If a fan is blowing into a prevailing wind, the fan capacity can be significantly decreased as well. If you do not have a choice but point that way, it would be wise to consider a hood or other deflector over the fan.

When you are deciding on what size fan to get, it is often suggested to get two fans with that combined capacity. It will cost more up front, but the extra payback will be on extra flexibility or options for ventilating. This gives you the option of “half capacity”.

When planning for a forced ventilation system, it is important to understand the requirements and cost of getting the electrical service to that area and also what the on going operating costs will be. In both cases, these expenses can be significant.

One last thing which needs to be pointed out for consideration has to do with irrigation. In a forced ventilation structure, things dry out more quickly and they will also dry out unevenly. Just something to be aware of when you are thinking everything will get watered the same.

In our next article we will explore the opposite end of this spectrum … some of the options of passive venting.